Python Pandas Stock
Python Pandas Stock
Pandas Stock
from pandas_datareader import data as pdr
import yfinance as yf
yf.pdr_override()
sec = pdr.get_data_yahoo('005930.KS', start='2018-05-04')
msft = pdr.get_data_yahoo('MSFT', start='2018-05-04')
# [*********************100%***********************] 1 of 1 completed
# [*********************100%***********************] 1 of 1 completed
print(sec.head(10))
# Open High Low Close Adj Close Volume
# Date
# 2018-05-04 53000.0 53900.0 51800.0 51900.0 46191.074219 39565391
# 2018-05-08 52600.0 53200.0 51900.0 52600.0 46814.070312 23104720
# 2018-05-09 52600.0 52800.0 50900.0 50900.0 45301.074219 16128305
# 2018-05-10 51700.0 51700.0 50600.0 51600.0 45924.066406 13905263
# 2018-05-11 52000.0 52200.0 51200.0 51300.0 45657.078125 10314997
# 2018-05-14 51000.0 51100.0 49900.0 50100.0 44589.066406 14909272
# 2018-05-15 50200.0 50400.0 49100.0 49200.0 43788.066406 18709146
# 2018-05-16 49200.0 50200.0 49150.0 49850.0 44366.574219 15918683
# 2018-05-17 50300.0 50500.0 49400.0 49400.0 43966.070312 10365440
# 2018-05-18 49900.0 49900.0 49350.0 49500.0 44055.070312 6706570
tmp_msft = msft.drop(columns='Volume')
print(tmp_msft.tail())
# Open High Low Close Adj Close
# Date
# 2022-02-14 293.769989 296.760010 291.350006 295.000000 294.391296
# 2022-02-15 300.010010 300.799988 297.019989 300.470001 299.850006
# 2022-02-16 298.369995 300.869995 293.679993 299.500000 299.500000
# 2022-02-17 296.359985 296.799988 290.000000 290.730011 290.730011
# 2022-02-18 293.049988 293.859985 286.309998 287.929993 287.929993
print(sec.index)
# DatetimeIndex(['2018-05-04', '2018-05-08', '2018-05-09', '2018-05-10',
# '2018-05-11', '2018-05-14', '2018-05-15', '2018-05-16',
# '2018-05-17', '2018-05-18',
# ...
# '2022-02-09', '2022-02-10', '2022-02-11', '2022-02-14',
# '2022-02-15', '2022-02-16', '2022-02-17', '2022-02-18',
# '2022-02-21', '2022-02-22'],
# dtype='datetime64[ns]', name='Date', length=935, freq=None)
print(sec.columns)
# Index(['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'], dtype='object')
시각화
from pandas_datareader import data as pdr
import yfinance as yf
yf.pdr_override()
sec = pdr.get_data_yahoo('005930.KS', start='2018-05-04')
msft = pdr.get_data_yahoo('MSFT', start='2018-05-04')
import matplotlib.pyplot as plt
plt.plot(sec.index, sec.Close, 'b', label='Samsung Elactronics')
plt.plot(msft.index, msft.Close, 'r--', label='Microsoft')
plt.legend(loc='best')
plt.show()
댓글남기기